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Summary

Thunderstorm activity produces large amounts of elec-
tromagnetic energy which is trapped within the
earth-ionosphere waveguide. The random sum of energy
from activity on a near global scale produces a low level,
quasi-continuous source field. Very large, or equivalently,
relatively nearby lightning discharges produce individual
transient events whose amplitude are significantly larger
than that of the low level background field. Therefore,
substantial increases in signal-to-noise ratio can be
realized by recording exclusively sources of a transient
nature. However, the transient events are strongly
linearly polarized, the polarization diversity of which can
affect the estimation of earth response curves.

We introduce a method by which an adaptive time do-
main averaging of the transient waveforms is conducted.
In its static form, this was termed polarization stacking
(Kosteniuk and Paulson, 1988).

Our theoretical analysis has shown that the bias in the
impedance tensor or magnetic field tipper estimate con-
verges to zero super-exponentially in stacked signal-to-
noise ratio.

Verification of our theoretical analysis was accomplished
with Monte-Carlo simulation using real data. It is found
that, given typical polarization characteristics of transient
sources, adaptive polarization stacking outperforms con-
ventional least-squares and remote-reference analyses in
the rate of bias convergence.

Introduction

Magnetotellurics (MT) makes use of naturally occurring
fluctuations in the earth’s geomagnetic field, along with
electric field fluctuations induced within the earth by
the former, to map sub-surface resistivity. The chief
source of naturally occurring energy in the ELF/VLF
1 bandwidth is due to lightning discharges (Pierce,
1977. Volland, 1982). Thunderstorm activity on a near
global scale gives rise to a low level, quasi-continuous
component, superimposed on which are individual
transients which arise from either relatively nearby
and/or very large current-moment lightning discharges
(Tzanis and Beamish, 1987. Jones and Kemp, 1971).
Note that nearby is defined relative to global waveguide
attenuation. For example, nearby at 100 Hz may be 6
Mm 2 whereas at 5 kHz, perhaps 1.5 Mm.

Both energy sources can be used to estimate the

1ELF:Extremely-Low Frequency, 3 Hz - 3 kHz; VLF: Very-
Low Frequency, 3 kHz - 30 kHz

21 Mm =1000 km

impedance tensor or magnetic field tipper, but substan-
tial increases in signal-to-noise ratio (SNR) are afforded
by attempting to exclusively record transients. The rea-
son is two-fold; firstly, for most of the ELF/VLF band-
width, there can be significant lengths of time over which
the level of continuing activity is near or below the in-
strumentation noise floor. Therefore, by only recording
data when transients are present, the temporal periods of
low SNR are avoided. Secondly, transients are generally
more than an order of magnitude larger than the low level
continuing component.

However, transient data exhibits strong linear polariza-
tion. The angle between sources affects the rate of bias
convergence with 90◦ being ideal for the adaptive po-
larization stacking (APS) method. In addition to the
usual sources of bias for the conventional least squares
(LS) and remote-reference (RR) techniques, the presence
of large amplitude, linearly polarized transients further
affects the rate of bias convergence. For LS, the angle be-
tween sources can produce bias additional to that caused
by finite SNR data. For RR (Gamble et al., 1979), the
requirement of circular polarization in the local and ref-
erence source fields is violated. As with LS, the angle
between sources also affects the rate of bias convergence
with RR.

Therefore, we implement an adaptive time domain av-
eraging of the transient waveforms to enhance SNR and
thereby reduce bias. Prior to averaging though, we need
to group the transients into two distinct sets in accordance
with the stack directions defined. Placing the stacks
rigidly along the (x, y) co-ordinate system axes results
in what was termed polarization stacking (Kosteniuk and
Paulson, 1988). As an improvement, we let the orienta-
tion of the stacks be adaptive to the constantly chang-
ing bearing and amplitude characteristics of the transient
data.

In order to realize the ideal
√

N enhancement in SNR
with signal averaging, one requires that the noise be un-
correlated across records and that the same underlying
signal be present in every noisy recording. With lightning
transients, each received waveform reflects the amount of
attenuation and dispersion suffered in propagating to the
measurement location. Therefore, each transient is in-
deed different, but they all have a well defined extremum,
each of which can be aligned and subsequently summed in
phase, resulting in an SNR enhancement. The improved
SNR (ISNR) is bounded below by SNR and above by√

N∗SNR.

Theory

The fundamental quantity of interest for MT surveys is
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the impedance tensor Z̃ which is the transfer function
between mutually orthogonal, horizontal components of
magnetic and electric fields as defined in equation (1). A
right handed co-ordinate system is typically defined as
+x North, +y East and +z vertically down.

[
Ẽx

Ẽy

]
=

[
Z̃xx Z̃xy

Z̃yx Z̃yy

]
·
[

H̃x

H̃y

]
(1)

or simply

Ẽ = Z̃H̃

The regression problem is then one of estimating the com-
plex values of Z̃. This has traditionally been done by
minimizing the sum square error of the residual on the
electric field channels. The least squares formula (LS)
in this case are obtained by post-multiplying both sides
of equation (1) by (H̃∗

x , H̃∗
y ) where the asterisk denotes

complex conjugation. Summing over N records we obtain
the familiar least squares form in the electric field noise
minimization case.

We note that since we have four complex unknowns and
only two equations, we need at least two independent
measurements of equation (1) to solve for Z̃. If we con-
sider this simplest case, we have

Ẽxi = Z̃xxH̃xi + Z̃xyH̃yi (2)

Ẽyi = Z̃yxH̃xi + Z̃yyH̃yi

i = 1, 2.

Solving this pair of 2 × 2 linear systems yields the two-
point formulas for Z̃. The modifier two-point is used as
although these are complex variables, the solution is anal-
ogous to passing a plane through the origin and two other
points.

Until now, statistical analysis of the bias in estimates of Z̃
has been done for the LS (Sims et al., 1971) and remote-
reference (RR) (Gamble et al, 1979) solutions, but never
for the two-point solution. Although it was claimed that
RR is “unbiased”(Gamble et al., 1979), this is valid only
in the limit of infinitely many independent measurements.
Practically then, the solutions of Z̃ just mentioned in fact
display a finite convergence of bias as SNR becomes large.
However, for RR and APS, there is also a bias conver-
gence to some arbitrarily small level at fixed SNR, as the
number of measurements N becomes large.

The LS solution has a bias that converges very slowly
as SNR−2. By contrast, the bias in the two-point for-
mula is due only to nonlinearity in the complex quo-
tient. Its bias is of infinitely smaller order, namely
exp(− 1

2
(ISNR sin(α))2), where α is the angle between

the stacked events, with 0≤ α ≤ 90◦.

However, the polarization diversity of received transients
may be such that α is much less than the optimal 90◦, but
even for α = 30◦, the reduction factor of sin(α) = 0.5 is

quickly offset by the improvement in SNR. At only mod-
erate ISNR and angle α, the stacking bias can already be
less than 10−7|Z̃| and hence negligible in single precision.

We use complex function theory to give an easy proof of
the exactness of our bias formula in the one-dimensional
case. We then extend the computation to the full tensor of
equation (1). As the formula becomes more complicated,
we simplify the bias expression to that of an upper bound
of the form, shown for Z̃xy only,

| < Z̃xy > −Z̃true
xy | ≤ A(ISNR, α) + U(ISNR, α), (3)

which is well-approximated as simply

| < Z̃xy > −Z̃true
xy | ≤ U(ISNR, α), (4)

where < Z̃xy > is the ensemble average over all noise
instances. Here U(ISNR, α) is a numerically evaluated
upper bound for a certain probability integral, while
A(ISNR, α) is analytically known and small by compari-
son since it contains a factor of exp(− 1

2
(ISNR sin(α))2).

Yet the bound U(ISNR, α) still has “super-exponential”
convergence, as its profile on a log plot shows.

Monte-Carlo Simulation with Real Data

To confirm the super-exponential bias convergence of the
APS method, and to analyze both LS and RR techniques,
Monte-Carlo simulations were performed with transient
data.

To make the simulations as realistic as possible, magnetic
field data recorded on Sept 14, 2000 were used with a
noise-free Z̃ obtained from modeling a one-dimensional
earth. The electric field data which perfectly corresponds
to the magnetic field data was created through equation
(1) using the synthetic one-dimensional Z̃. The magnetic
field data are typical for a fall recording in south-central
Saskatchewan (Goldak, 1998) with two dominant sources,
one in the Great Lakes region approximately 2.2 Mm
distant, the other in the Gulf of Mexico approximately
3 Mm distant (www.lightningstorm.com). The perfect
mapping between magnetic and electric field data sets was
then disrupted by introducing linearly additive, normally
distributed, pseudo-random noise in varying amounts so
as to vary the SNR. For a given SNR, this process was
repeated between 1 × 105 to 12 × 106 times to generate
a noisy family of impedance tensor curves from which an
estimate of the bias and its error were found.

We also carried out Monte-Carlo simulations with syn-
thetic transient data generated by using the Bruce and
Golde (1941) current model, the modal waveguide equa-
tions of Wait (1962) and the waveguide transmission func-
tion data of Barr (1970). However, we felt that by using
real data the largest amount of variablilty in the time do-
main waveforms would be realized, thus testing the bias
convergence of the APS method in the most realistic man-
ner.
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Shown in Figure 1 is the theoretical upper bound on the
bias for a 30◦ stack angle, and the bias convergence as es-
timated by Monte-Carlo simulation for a 20◦ stack angle.
Note that the theoretical analysis is in terms of ISNR,
therefore, pre-stack Monte-Carlo SNR was converted to
approximate ISNR by multiplying the former by

√
N ,

where N is the number of events in each stack. Of course
the true SNR enhancement will be something less than√

N , no matter what it truly is, we see that the theoret-
ical upper bound is still very generous in this case and
that the order of convergence is verified by the results of
the Monte-Carlo simulation.
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Figure 1: Confirmation of super-exponential Bias
Convergence

Shown in Figure 2 is a comparison of the rate of bias
convergence between APS, LS and RR. Eight transient
events were used with a stack angle of 20◦. We see that
the bias in the APS method converges faster than either
LS or RR techniques. Interestingly, LS bias convergence
is near exponential. Theory predicts that for large event
count and SNR that the LS bias convergence should be
only algebraic. This remains to be confirmed through
further Monte-Carlo simulation.
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Figure 2: Bias Convergence

Shown in Figure 3 is the bias convergence at constant
SNR and approximately constant stack angle of 20◦, but
with varying number of events. This is a more realistic
situation as we have control over the number of recorded
events during field work. In agreement with RR theory,
the bias in the RR estimate is a partly a function of the
sample size. Interestingly, the bias in the LS estimate
worsens slightly as the number of events increases. Once
again, the bias convergence of the APS method is faster
than both RR and LS.
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Figure 3: Bias Convergence with increasing N

Also shown in Figure 3 is the bias for the “scattered bear-
ing” case. APS bias is indicated by the triangle and RR
by the box. This was done in an attempt to compare most
fairly RR and APS. For the latter, each event is projected
and averaged along the mean bearing of its stack. There-
fore, having two well collimated sources results in a very
good SNR enhancement as every event lies very close to
the mean bearing of its stack. If we instead had a diffuse
scatter of bearings, given equal amplitude, events which
are farther away from the mean direction of their stack
contribute less to the overall SNR enhancement than do
ones which lie closer. The factor being ≈ cos(θ) where
θ is the difference between the stack and event bearing.
Conversely, the “scattered bearing” case is advantageous
for RR, which enjoys any bearing distribution that more
closely approximates circular polarization. However, we
see that even in this case, APS outperforms RR, although
the improvement ratio is much smaller.

Conclusions

The largest naturally occurring signals in the ELF/VLF
bandwidth are transients. In order to record transients
most efficiently, a time localized recording technique is
desired. In so doing, a substantial SNR enhancement is
realized as the temporal periods of low SNR are com-
pletely avoided.
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We have shown both theoretically and practically, that an
adaptive time domain averaging of transient waveforms
results in essentially unbiased estimates of the impedance
tensor or magnetic field tipper while using only four chan-
nels of data. We do require that the noise between sep-
arate records on any given channel be uncorrelated. Our
analysis has further shown that when one works exclu-
sively with transients, given typical polarization charac-
teristics, the bias convergence of the APS method is of
higher order than LS or RR.

Towards more closely achieving the ideal
√

N enhance-
ment in SNR, we are working on a frequency domain ver-
sion of the APS method. It is hoped that this will make
even better use of the transient data by rectifying the
issue of non similarity of time domain waveforms.
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